Hypothesis Testing I: Getting started

Null and Alternative Hypotheses

- H₀: the *Null* Hypothesis (the hypothesis we are testing)
- H₁: the *Alternative* Hypothesis, the alternative to H₀
- Overwhelmingly, the Null Hypothesis we will be focusing on is:
 - H₀: The true parameter value is 0

Two Types of Error

- Type I False Rejection:
 - Rejecting the Null, H₀, (and accepting the Alternative, H₁) when H₀ is true
- Type II False Acceptance:
 - Accepting the Null, H₀, (and rejecting the Alternative, H₁) when H₀ is false

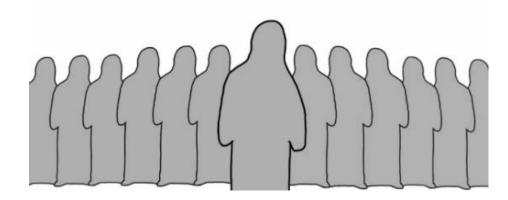
Focus on Type I Error: False Rejection

- We generally focus on Type I error and *protect* the Null hypothesis... only rejecting the Null hypothesis in the face of *overwhelming* evidence to the contrary... where, for example, the probability of being wrong (incorrectly rejecting the Null) is very small... \leq 10%, ... \leq 5%, or ... \leq 1%, or....
- So while mistakes may happen, their probability will be small small.

Significance levels (α):

- We call these probabilities significance levels, and typically denote them with α. They are the maximum acceptable probability of a Type I error = P(Reject H₀ | H₀ is true)
- Where do significance levels come from?
 We make them up!

The default, the status quo
I am already accepted, can only be rejected
The burden of proof is on the alternative
I am the null hypothesis



Estimating the Mean of the Distribution: Reprise

- Random sample: $\{Y_1, Y_2, ... Y_n\}$ are an *iid* random sample from Y.
- Sample Mean estimator of μ : $\overline{Y} = \frac{1}{n} \sum Y_i$ is a BLUE estimator of μ .
- Normal distribution: Assume $Y \sim N(\mu, \sigma^2)$, so $\overline{Y} \sim N(\mu, \frac{\sigma^2}{n})$ and $\frac{\overline{Y} \mu}{\sigma / \sqrt{n}} = \frac{Y \mu}{s d(\overline{Y})} \sim N(0, 1)$.
- Unknown variance: If $var(Y) = \sigma^2$ is unknown then need to estimate $sd(\overline{Y}) = \frac{\sigma}{\sqrt{n}}$.
- Unbiased estimator: $E(S_{YY}) = \sigma^2$, so use $se(\overline{Y}) = \frac{S_Y}{\sqrt{n}}$ (standard error of \overline{Y}) to estimate $sd(\overline{Y})$.
- $t \text{ statistic}: \frac{\overline{Y} \mu}{se(\overline{Y})} = \frac{\overline{Y} \mu}{S_Y / \sqrt{n}} \sim t_{n-1} \text{ has a (Student's) t distribution with n-1 degrees of freedom}$

Testing the Null Hypothesis: H_0 : $\mu = 0$

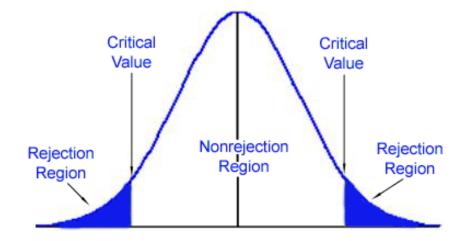
Run the Hypothesis Test: I

Step 1: Constrict the t-statistic, the cornerstone of inference: t $statistic = \frac{Y - \mu}{S_Y / \sqrt{n}}$.

- Note that t statistics can be positive or negative.
- **Step 2**: Evaluate the t statistic under the Null Hypothesis (H_0 : $\mu = 0$):
- Since $\mu=0$, the t statistic, t $stat=\frac{\overline{Y}}{S_Y/\sqrt{n}}$, has a t distribution with n-1 degrees of freedom. As before, we express this as $\frac{\overline{Y}}{S_V/\sqrt{n}}\sim t_{n-1}$.
- This is the *t-stat* under the Null Hypothesis ($H_0: \mu=0$). (Notice that I did not call it a *t* statistic... if you see or hear the term *t stat*, unless you know otherwise, it's reasonable to make the underlying assumption that the true parameter value is zero).

Run the Hypothesis Test: II

- Reject if $\left| \frac{\overline{Y}}{S_Y / \sqrt{n}} \right| > c$... if the *t stat* is larger in magnitude than some *critical value* c > 0.
- So reject the Null Hypothesis H_0 : $\mu = 0$
 - if $\frac{\overline{Y}}{S_Y/\sqrt{n}} > c$ or if $\frac{\overline{Y}}{S_Y/\sqrt{n}} < -c$.
 - The rejection region consists of two tails of the t-distribution... which is why this is called a two-tailed test.



The Probability of a Type I Error

- The probability of Type I error is the probability of rejecting H₀ when it is true.
- For this test, that probability is $prob\left(\left|\frac{\overline{Y}}{S_Y/\sqrt{n}}\right|>c\right)$.
- But since $\frac{\overline{Y}}{S_v / \sqrt{n}} \sim t_{n-1}$ under the Null Hypothesis,

$$prob\left(\left|\frac{\overline{Y}}{S_{Y}/\sqrt{n}}\right|>c\right)=prob\left(\left|t_{n-1}\right|>c\right)$$
 is just the probability that we're in the tails of a t

distribution with n-1 degrees of freedom (below -c or above +c)

Selecting the Critical Values

• Suppose that we want to select the critical value c so that the probability of falsely rejecting the Null hypothesis is $\alpha = 5\%$ (the *significance level* of the test). Then because the t-distribution is symmetric, we want to find c^* such that:

$$prob\left(\frac{\overline{Y}}{S_{Y}/\sqrt{n}}>c^{*}\right)=prob\left(t_{n-1}>c^{*}\right)=.025$$

(focusing just on the upper tail probability).

- For this critical value, c^* , we reject $H_0: \mu = 0$ if $\left|t \; stat\right| > c^*$ or, equivalently, if $\left|\overline{Y}\right| > c^* \; \frac{S_Y}{\sqrt{n}}$.
- With this test, we will falsely reject H₀ 5% of the time... a low Type I error rate (a small risk that we rejected the Null Hypothesis when it was true).

Critical Values for the t and Standard Normal distributions

grees of				
reedom _	Significance Levels (two-tailed test)			
	20%	10%	5%	1%
5	1.48	2.02	2.57	4.03
10	1.37	1.81	2.23	3.17
15	1.34	1.75	2.13	2.95
20	1.33	1.72	2.09	2.85
25	1.32	1.71	2.06	2.79
30	1.31	1.7	2.04	2.75
35	1.31	1.69	2.03	2.72
40	1.3	1.68	2.02	2.7
45	1.3	1.68	2.01	2.69
50	1.3	1.68	2.01	2.68
_				
N(0,1)	1.28	1.64	1.96	2.58

The Test & Statistical Significance

The Test: Reject the Null Hypothesis H_0 : $\mu = 0$ if ...

- the observed sample mean is at least c^* Standard Errors away from 0, or put differently,
- if the t-stat is larger in magnitude than c^* , where the particular value of c^* reflects the significance level of the test, α , and the degrees of freedom.

Statistical Significance

- If we can reject the Null Hypothesis $H_0: \mu=0$ at, say, the 5% significance level, then we say that the estimate is **statistically significant** at the 5% level (using a two-tailed test).
- It makes no sense to talk about statistical significance without referencing the significance level.
- Common significance levels are 10%, 5%, 1% and .1%.
- Where do they come from? We make them up!
- And remember: Every estimate is statistically significant at some significance level! ... but in some cases, that level is embarrassingly large!

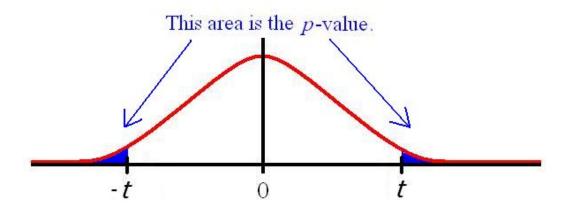
Probability Values (p values): The Easy Test

- Probability values (or p values for short) are the maximum significance levels at which we
 can conduct a hypothesis test and fail to reject the Null Hypothesis.... Typically, p values are
 reported for two-tailed tests.
 - So if the p value is, say .02, then the null hypothesis can be rejected at significance levels above 2%, but not at smaller significance levels.
- More formally: Suppose we have a particular sample mean \overline{y} and particular standard error

$$se = \frac{S_y}{\sqrt{n}}$$
. Then we can determine the p value

as the probability of being that far or further away from 0 under the Null Hypothesis that

$$\mu = 0$$
: $prob(|t_{n-1}| > |t| stat|) = p$.



Rejection Rule II: p values and significance levels

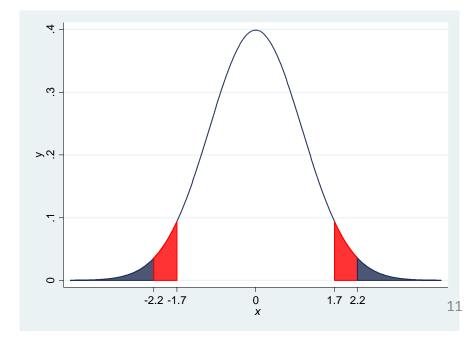
- We will reject the two-tailed Null Hypothesis that $\mu = 0$ at the significance level α if and only if $p < \alpha$ (the p-value for the given sample is smaller than the significance level for the test):
- From before, we reject the Null hypothesis if the t stat is larger than the critical value. So reject if:

$$prob\left(\left|\frac{\overline{Y}}{S_{Y}/\sqrt{n}}\right|\right)>c_{\alpha}$$
 where c_{α} is defined by $prob\left(\left|t_{n-1}\right|>c_{\alpha}\right)=\alpha$.

- But the t stat is larger than the critical value if and only if the p value is less than the significance level, so we can equivalently reject if $p < \alpha$.
- Since *small p values* ~ *large t stats*, we reject if: $p < \alpha \Leftrightarrow \left| \frac{\overline{y}}{S_y / \sqrt{n}} \right| = |t| stat | > c_\alpha$

Equivalence of Rejection Rules: An Example

- In this case $\alpha = .10$, dofs = 30 and $c^* = 1.7$.
- Reject the Null Hypothesis that $\mu = 0$ if |t| stat > 1.7 or if |t| value < .10.
- Here, |t| stat| = 2.2 > 1.7 and |p| value| < .10, since the shaded region to the right of 2.2, $\frac{p|value|}{2}$, is less than the shaded region to the right of 1.7, $\frac{\alpha}{2}$. So: Reject! Reject!
- Accordingly: p values make hypothesis testing easier, since we don't need to determine critical values. If we want the Type I Error to be less than 10% in a two-tailed test, then we reject the null hypothesis only if the p value is below 10%. Done!
- You'll discover that Stata gives you the p-values in the regression output... making hypothesis testing and the determination of statistical significance a snap!



A Peek Ahead: p values & Statistical Significance

reg Brozek BMI if n < 10 Source SS Number of obs df MS 9 = 4.00 F(1, 7) Model 178.534262 178.534262 Prob > F = 0.0857 Residual 312.734627 44.6763753 R-squared = 0.3634 Adj R-squared 0.2725 Total 491.268889 61.4086111 Root MSE 6.684 Brozek Coef. Std. Err. P>|t| [95% Conf. Interval] t -.7666158 BMI 4.191929 2.096969 2.00 0.086 9.150474 -88.37095 52.05255 -1.70 0.133 -211.4557 34.71376

cons